3.989 \(\int \frac{A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=139 \[ \frac{2 \left (a^3 (-C)+a A b^2+2 a b^2 C-b^3 B\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{b^2 d (a-b)^{3/2} (a+b)^{3/2}}-\frac{\sin (c+d x) \left (A b^2-a (b B-a C)\right )}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac{C x}{b^2} \]

[Out]

(C*x)/b^2 + (2*(a*A*b^2 - b^3*B - a^3*C + 2*a*b^2*C)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/((a -
 b)^(3/2)*b^2*(a + b)^(3/2)*d) - ((A*b^2 - a*(b*B - a*C))*Sin[c + d*x])/(b*(a^2 - b^2)*d*(a + b*Cos[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.226295, antiderivative size = 139, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.121, Rules used = {3021, 2735, 2659, 205} \[ \frac{2 \left (a^3 (-C)+a A b^2+2 a b^2 C-b^3 B\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{b^2 d (a-b)^{3/2} (a+b)^{3/2}}-\frac{\sin (c+d x) \left (A b^2-a (b B-a C)\right )}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac{C x}{b^2} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(a + b*Cos[c + d*x])^2,x]

[Out]

(C*x)/b^2 + (2*(a*A*b^2 - b^3*B - a^3*C + 2*a*b^2*C)*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/((a -
 b)^(3/2)*b^2*(a + b)^(3/2)*d) - ((A*b^2 - a*(b*B - a*C))*Sin[c + d*x])/(b*(a^2 - b^2)*d*(a + b*Cos[c + d*x]))

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{A+B \cos (c+d x)+C \cos ^2(c+d x)}{(a+b \cos (c+d x))^2} \, dx &=-\frac{\left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac{\int \frac{b (b B-a (A+C))-\left (a^2-b^2\right ) C \cos (c+d x)}{a+b \cos (c+d x)} \, dx}{b \left (a^2-b^2\right )}\\ &=\frac{C x}{b^2}-\frac{\left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac{\left (b^3 B+a^3 C-a b^2 (A+2 C)\right ) \int \frac{1}{a+b \cos (c+d x)} \, dx}{b^2 \left (a^2-b^2\right )}\\ &=\frac{C x}{b^2}-\frac{\left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac{\left (2 \left (b^3 B+a^3 C-a b^2 (A+2 C)\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{b^2 \left (a^2-b^2\right ) d}\\ &=\frac{C x}{b^2}+\frac{2 \left (a A b^2-b^3 B-a^3 C+2 a b^2 C\right ) \tan ^{-1}\left (\frac{\sqrt{a-b} \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a+b}}\right )}{(a-b)^{3/2} b^2 (a+b)^{3/2} d}-\frac{\left (A b^2-a (b B-a C)\right ) \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}\\ \end{align*}

Mathematica [A]  time = 0.658052, size = 131, normalized size = 0.94 \[ \frac{-\frac{2 \left (a^3 C-a b^2 (A+2 C)+b^3 B\right ) \tanh ^{-1}\left (\frac{(a-b) \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{b^2-a^2}}\right )}{\left (b^2-a^2\right )^{3/2}}-\frac{b \sin (c+d x) \left (a (a C-b B)+A b^2\right )}{(a-b) (a+b) (a+b \cos (c+d x))}+C (c+d x)}{b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(a + b*Cos[c + d*x])^2,x]

[Out]

(C*(c + d*x) - (2*(b^3*B + a^3*C - a*b^2*(A + 2*C))*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/(-a^
2 + b^2)^(3/2) - (b*(A*b^2 + a*(-(b*B) + a*C))*Sin[c + d*x])/((a - b)*(a + b)*(a + b*Cos[c + d*x])))/(b^2*d)

________________________________________________________________________________________

Maple [B]  time = 0.034, size = 436, normalized size = 3.1 \begin{align*} 2\,{\frac{\arctan \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) C}{d{b}^{2}}}-2\,{\frac{b\tan \left ( 1/2\,dx+c/2 \right ) A}{d \left ({a}^{2}-{b}^{2} \right ) \left ( a \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}- \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b+a+b \right ) }}+2\,{\frac{a\tan \left ( 1/2\,dx+c/2 \right ) B}{d \left ({a}^{2}-{b}^{2} \right ) \left ( a \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}- \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b+a+b \right ) }}-2\,{\frac{{a}^{2}\tan \left ( 1/2\,dx+c/2 \right ) C}{db \left ({a}^{2}-{b}^{2} \right ) \left ( a \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}- \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b+a+b \right ) }}+2\,{\frac{aA}{d \left ( a+b \right ) \left ( a-b \right ) \sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}\arctan \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) }-2\,{\frac{bB}{d \left ( a+b \right ) \left ( a-b \right ) \sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}\arctan \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) }-2\,{\frac{{a}^{3}C}{d{b}^{2} \left ( a+b \right ) \left ( a-b \right ) \sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}\arctan \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) }+4\,{\frac{aC}{d \left ( a+b \right ) \left ( a-b \right ) \sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}\arctan \left ({\frac{ \left ( a-b \right ) \tan \left ( 1/2\,dx+c/2 \right ) }{\sqrt{ \left ( a+b \right ) \left ( a-b \right ) }}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^2,x)

[Out]

2/d/b^2*arctan(tan(1/2*d*x+1/2*c))*C-2/d*b/(a^2-b^2)*tan(1/2*d*x+1/2*c)/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/
2*c)^2*b+a+b)*A+2/d*a/(a^2-b^2)*tan(1/2*d*x+1/2*c)/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)*B-2/d/b
*a^2/(a^2-b^2)*tan(1/2*d*x+1/2*c)/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)*C+2/d*a/(a+b)/(a-b)/((a+
b)*(a-b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))*A-2/d*b/(a+b)/(a-b)/((a+b)*(a-b))^(1/2)*a
rctan((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))*B-2/d*a^3/b^2/(a+b)/(a-b)/((a+b)*(a-b))^(1/2)*arctan((a-b)
*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))*C+4/d*a/(a+b)/(a-b)/((a+b)*(a-b))^(1/2)*arctan((a-b)*tan(1/2*d*x+1/2*
c)/((a+b)*(a-b))^(1/2))*C

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.72109, size = 1280, normalized size = 9.21 \begin{align*} \left [\frac{2 \,{\left (C a^{4} b - 2 \, C a^{2} b^{3} + C b^{5}\right )} d x \cos \left (d x + c\right ) + 2 \,{\left (C a^{5} - 2 \, C a^{3} b^{2} + C a b^{4}\right )} d x -{\left (C a^{4} -{\left (A + 2 \, C\right )} a^{2} b^{2} + B a b^{3} +{\left (C a^{3} b -{\left (A + 2 \, C\right )} a b^{3} + B b^{4}\right )} \cos \left (d x + c\right )\right )} \sqrt{-a^{2} + b^{2}} \log \left (\frac{2 \, a b \cos \left (d x + c\right ) +{\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt{-a^{2} + b^{2}}{\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) - 2 \,{\left (C a^{4} b - B a^{3} b^{2} +{\left (A - C\right )} a^{2} b^{3} + B a b^{4} - A b^{5}\right )} \sin \left (d x + c\right )}{2 \,{\left ({\left (a^{4} b^{3} - 2 \, a^{2} b^{5} + b^{7}\right )} d \cos \left (d x + c\right ) +{\left (a^{5} b^{2} - 2 \, a^{3} b^{4} + a b^{6}\right )} d\right )}}, \frac{{\left (C a^{4} b - 2 \, C a^{2} b^{3} + C b^{5}\right )} d x \cos \left (d x + c\right ) +{\left (C a^{5} - 2 \, C a^{3} b^{2} + C a b^{4}\right )} d x -{\left (C a^{4} -{\left (A + 2 \, C\right )} a^{2} b^{2} + B a b^{3} +{\left (C a^{3} b -{\left (A + 2 \, C\right )} a b^{3} + B b^{4}\right )} \cos \left (d x + c\right )\right )} \sqrt{a^{2} - b^{2}} \arctan \left (-\frac{a \cos \left (d x + c\right ) + b}{\sqrt{a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) -{\left (C a^{4} b - B a^{3} b^{2} +{\left (A - C\right )} a^{2} b^{3} + B a b^{4} - A b^{5}\right )} \sin \left (d x + c\right )}{{\left (a^{4} b^{3} - 2 \, a^{2} b^{5} + b^{7}\right )} d \cos \left (d x + c\right ) +{\left (a^{5} b^{2} - 2 \, a^{3} b^{4} + a b^{6}\right )} d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

[1/2*(2*(C*a^4*b - 2*C*a^2*b^3 + C*b^5)*d*x*cos(d*x + c) + 2*(C*a^5 - 2*C*a^3*b^2 + C*a*b^4)*d*x - (C*a^4 - (A
 + 2*C)*a^2*b^2 + B*a*b^3 + (C*a^3*b - (A + 2*C)*a*b^3 + B*b^4)*cos(d*x + c))*sqrt(-a^2 + b^2)*log((2*a*b*cos(
d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 - 2*sqrt(-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/
(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)) - 2*(C*a^4*b - B*a^3*b^2 + (A - C)*a^2*b^3 + B*a*b^4 - A*b^5)
*sin(d*x + c))/((a^4*b^3 - 2*a^2*b^5 + b^7)*d*cos(d*x + c) + (a^5*b^2 - 2*a^3*b^4 + a*b^6)*d), ((C*a^4*b - 2*C
*a^2*b^3 + C*b^5)*d*x*cos(d*x + c) + (C*a^5 - 2*C*a^3*b^2 + C*a*b^4)*d*x - (C*a^4 - (A + 2*C)*a^2*b^2 + B*a*b^
3 + (C*a^3*b - (A + 2*C)*a*b^3 + B*b^4)*cos(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 -
 b^2)*sin(d*x + c))) - (C*a^4*b - B*a^3*b^2 + (A - C)*a^2*b^3 + B*a*b^4 - A*b^5)*sin(d*x + c))/((a^4*b^3 - 2*a
^2*b^5 + b^7)*d*cos(d*x + c) + (a^5*b^2 - 2*a^3*b^4 + a*b^6)*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(a+b*cos(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.20485, size = 297, normalized size = 2.14 \begin{align*} \frac{\frac{2 \,{\left (C a^{3} - A a b^{2} - 2 \, C a b^{2} + B b^{3}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{a^{2} - b^{2}}}\right )\right )}}{{\left (a^{2} b^{2} - b^{4}\right )} \sqrt{a^{2} - b^{2}}} + \frac{{\left (d x + c\right )} C}{b^{2}} - \frac{2 \,{\left (C a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - B a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + A b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (a^{2} b - b^{3}\right )}{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a + b\right )}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^2,x, algorithm="giac")

[Out]

(2*(C*a^3 - A*a*b^2 - 2*C*a*b^2 + B*b^3)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/
2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(a^2 - b^2)))/((a^2*b^2 - b^4)*sqrt(a^2 - b^2)) + (d*x + c)*C/b^2
 - 2*(C*a^2*tan(1/2*d*x + 1/2*c) - B*a*b*tan(1/2*d*x + 1/2*c) + A*b^2*tan(1/2*d*x + 1/2*c))/((a^2*b - b^3)*(a*
tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c)^2 + a + b)))/d